Zitat:
Zitat von Lucy89
Die erste Frage verstehe ich nicht so richtig, die zweite Aussage stimmt definitiv nicht (also das mit dem absolut sicher-absolut sicher ist hier nichts), die dritte stimmt auch nicht wirklich.
Wenn ich es richtig verstehe hast du ein Konfidenzintervall bestimmt, was dir sagt wie oft die Eigeschaft in deiner Population vorkommt (das ist schon seltsam, normalerweise würde man eher ein Konfidenzintervall für den Anteil berechnen). Dein Konfidenzniveau von 95% sagt dir, dass der wahre Parameter (also hier die wahre Anzahl derer, die die Eigenschaft aufweisen) zu 95% in dem von dir bestimmten Bereich (9500,10500) liegt. Das sind vom Mittelwert des Intervalls, d.h. 10000, Abweichungen von 500 nach link und rechts. Das sind jetzt zwar 5% aber das ist absolut zufällig und hat NICHTS mit dem Fehlerniveau von 5% zu tun. Da ist es nämlich so, dass der Fehler sich auf beide Seiten aufteilt, d.h. 2,5% nach links und 2,5% nach rechts. Möchte man 5% auf beiden Seiten erlauben, wählt man ein Konfidenzniveau von 90%, dann wird der Bereich natürlich schmaler, aber die W'keit dass der wahre Parameter sich darin befindet, ist eben auch nur noch 90%.
Die Größe der Abweichung (hier 500) berechnet sich aus der geschätzten (oder als bekannt angenommenen) Standardabweichung und einem Quantil (bei deinem Rechner ein z-Quantil = Normalverteilung), also keinenfalls prozentual am Mitteltwert ("5% von 10000").
|
Oh :-O! Vielen Dank für die Mühe! Das verstehe ich auf Anhieb nicht. Ich kenne nämlich nicht einmal die Bedeutung aller Fachbegriffe richtig. Wir haben uns ja über repräsentative Studien unterhalten hier in diesem Faden. Da habe ich spontan im Netz nach Informationen gesucht, wie groß eine solche Stichprobe sein muss in Relation zur Gesamtpopulation. Ich fand da einen Online-Rechner (
https://www.surveymonkey.de/mp/sample-size-calculator/). In den kann man drei Werte eingaben und dann spuckt er die Stichprobengröße aus. Da habe ich wohl manches in den falschen Hals gekriegt. Später versuche ich Deine Worte zu verstehen. Danke - nochmal!